Search:   

The cryoscopic constants (Kfus)

The decrease of the melting temperature of a dilute solution of an ideal nonvolatile solute $A$ is proportional to the molality of the solute: $ \Delta T = K_{fus} \cdot \mu_A $ $ K_ {fus} $ is the cryoscopic constant that depends on the solvent

Solvent Name $t_{fus}$ $K_{fus}$
CH3CO2H Acetic acid $16.604$ $3.90$
CH3COCH3 Acetone $-95.35$ $0.850$
C6H5NH2 Aniline $-6.3$ $5.87$
C6H6 Benzene $5.5$ $4.90$
CS2 Carbon disulfide $-111.5$ $3.83$
CCl4 Carbon tetrachloride $-22.99$ $30.0$
CHCl3 Chloroforme $-63.5$ $4.70$
C6Hl2 Cyclohexane $6.55$ $20.0$
(C2H5)2O Diethylether $-116.2$ $1.79$
C10H8 Naphtalene $80.55$ $6.80$
C6H5NO2 Nitrobenzene $5.7$ $7.00$
C6H5OH Phenol $43$ $7.27$
C2H5OH Ethanol $-117.3$ $1.99$
H2O Water $0.0$ $1.86$

The ebullioscopic constants (Keb)

The increase in the boiling temperature of an ideal dilute solution of a nonvolatile solute $A$ is proportional to the molality of the solute: $ \Delta T = K_{eb} \cdot \mu_A $ $ K_{eb} $ is the ebullioscopic constant that depends on the solvent

Boiling points and ebullioscopic constants in $\frac{^o}{mol}$

Solvent Name t(eb) $K_{eb}$
CH3CO2H Acetic acid $117.9$ $3.07$
CH3COCH3 Acetone $56.2$ $1.71$
C6H5NH2 Aniline $184.13$ $3.22$
C6H6 Benzene $80.1$ $2.53$
CS2 Carbon disulfide $46.2$ $2.37$
CCl4 Carbon tetrachloride $76.5$ $4.95$
CHCl3 Chloroforme $61.2$ $3.66$
C6Hl2 Cyclohexane $80.74$ $2.79$
(C2H5)2O Diethylether $34.5$ $1.82$
C10H8 Naphtalene $218$ $5.8$
C6H5NO2 Nitrobenzene $210.8$ $5.26$
C6H5OH Phenol $181.75$ $3.04$
C2H5OH Ethanol $78.5$ $1.22$
H2O Water $100.0$ $0.512$

Henry´s constants (KH, kh and K)

If a gas $S$ is in contact with a liquid (where it is poorly soluble and with which it does not react), then - its mole fraction $X_S $ in the liquid is proportional at equilibrium to its partial pressure above the liquid: $X_S$ $=$ $k\cdot P_S$ $P_S$ $=$ $K\cdot X_S$ with: $k=\frac{1}{K}$ $P_S$ partial pressure of the gas above the liquid $K$ Henry´s constant expressed in $atm$ - its molarity $[S]$ in the liquid is proportional at equilibrium to its partial pressure above the liquid: $[S]$ $=$ $k_h\cdot P_S$ $P_S$ $=$ $K_H\cdot [S]$ with: $k_h=\frac{1}{K_H}$ $P_S$ partial pressure of the gas above the liquid $K_H$ Henry´s constant expressed in $\frac{L\cdot atm}{mol}$

Henry´s constants

$25^oC$ $K_H$ $(\frac{L \cdot atm}{mol})$ $k_h$ $(\frac{mol}{L\cdot atm})$ $K$ $(atm)$
O2 769.23 1.3×10-3 4.259×104
H2 1282.05 7.8×10-4 7.099×104
CO2 29.41 3.4×10-2 0.163×104
N2 1639.34 6.1×10-4 9.077×104
He 2702.7 3.7×10-4 14.97×104
Ne 2222.22 4.5×10-4 12.30×104
Ar 714.28 1.4×10-3 3.955×104
CO 1052.63 9.5×10-4 5.828×104