pH of acids, bases and salts
Exercise 7

Using the table of acid-base couples, calculate the $pH$ of a 0.5 % ($d$ = 1.0034) zinc sulfate solution named $S$.
$Zn(H_2O)_6^{2+}: $ weak acid
If $d$ = 1.0034, then $\rho$ = 1.0034 $\frac{g}{mL}$
Let's take $1\;L$ of solution $S$:
$m_S$ $=$ $\rho \cdot V_S $ $=$ $ \rho \cdot 1000 $ =
1003.4$\; g$
$m_{ZnSO_4}$ =
$\frac{\%_{ZnSO_4}\cdot m_S}{100} $ =
$\frac{0.5 \cdot1003.4}{100} $ =
5.02$\; g$;
$n_{ZnSO_4}=\frac{m_{ZnSO_4}}{M_{ZnSO_4}}$ =
$\frac{5.02}{161.44}$ =
0.031$\; mol$
$c_{Zn(H_2O)_6^{2+}}$ =
$c_{ZnSO_4}$ =
$\frac{n_{ZnSO_4}}{V_S}$ =
$\frac{0.031}{1}$ =
0.031 $\frac{mol}{L}$
Given $y=[H_3O^+]$
The equation
$y^2$ $+$ $K_a\;y$ $-$ $K_a\;c$ $=$ $0$
becomes:
$y^2$ $+$ $10^{-8.96}y$ $-$ $10^{-8.96} 0.031$ $=$ $0$
and produces:
$y=$ 5.84 10-6
and so:
$pH$ $=$ $-log\; y$ $ =$ 5.234