| $\LARGE \frac{a}{b^2}  $ and $\LARGE \frac{c}{b}  $  |    $\LARGE \frac{a}{b^2}$  and $\LARGE \frac{cb}{b^2}$  |  
| $\LARGE \frac{a}{x^2b}  $ and $\LARGE \frac{a}{xb^3}  $  |    $\LARGE \frac{ab^2}{x^2b^3}$  and  $\LARGE \frac{ax}{x^2b^3}$  |  
| $\LARGE \frac{x}{a^2+ab}  $ and  $\LARGE \frac{1}{a}$  |  $\LARGE \frac{x}{a(a+b)}  $ and  $\LARGE \frac{1}{a}$ so: $\LARGE \frac{x}{a(a+b)}  $ and $\LARGE \frac{a+b}{a(a+b)}$  |  
| $\LARGE \frac{b}{a^2-b^2}  $ and  $\LARGE \frac{a}{a+b}$  |  $\LARGE \frac{b}{^(a+b)(a-b)}  $ and  $\LARGE \frac{a}{a+b}$ so: $\LARGE \frac{b}{(a+b)(a-b)}  $ and $\LARGE \frac{a(a-b)}{(a+b)(a-b)}$  |